Stochastic Cooling

Dave McGinnis

http://cosmo.fnal.gov/organizationalchart/mcginnis/Talks/Talks.htm

FNAL Antiproton Source November 16, 2000

Why Stochastic Cooling

- Highest energies obtained in proton synchrotrons
- A single ring can contain two counter-rotating oppositely charged beams
- An intense antiproton source is needed for adequate luminosity
- Secondary beams of antiprotons are produced by targeting an intense proton beam
 - ☐ Intensities of secondary antiproton beams are 10⁻⁵ times smaller than proton production beams
 - □ Need to accumulate 10⁵ antiproton pulses
 - □ Need to compress phase space of each antiproton pulse by a factor of 10⁵.

Electron Cooling

- Proposed by Budker in 1966 & demonstrated by Budker in 1976
- Effective with
 - ☐ Small size beams
 - ☐ High density beams
- "Cold" dense electron beam merged with "hot" beam
 - ☐ Both beams must have same average velocity
 - □ Cooling proportional to ratio of particle mass to electron mass
 - □ Analogous to placing a cold cup of coffee next to a hot cup of coffee

Stochastic Cooling

- Proposed by van der Meer in 1972. Demonstrated in the CERN ISR in 1975
- Effective with
 - ☐ Large size beams
 - Low density beams
- Each particle is placed on the "correct" orbit one by one using feedback electronics
 - ☐ Cooling times can be as short as seconds (FNAL Debuncher) and as long as tens of minutes (FNAL Accumulator)
 - □ Analogous to separating green paint into yellow and blue paint.

Stochastic Cooling Phase Space

 Stochastic cooling rearranges phase space by placing particles into the "empty holes" in phase space.

Stochastic Cooling System Schematic

Stochastic Cooling uses Feedback

- A pickup electrode measures an error signal for a given particle
 - ☐ The error signal could be the particle's position or energy
 - ☐ The pickup signal can be extremely small on the order of 2x10⁻¹² Watt
- This signal is processed and amplified. The gain of a typical system is 150 dB (a factor of 10¹⁵ in power)
- The opposite of the error signal is applied to the particle at the kicker
 - ☐ The kicker signal can be as large as 2000 Watts
 - ☐ The kicker is usually similar in shape to the pickup and uses principle of Lorentz reciprocity. (The transmitting pattern is the same as the receiving pattern.)

System Bandwidth

- The resolution of a stochastic cooling system to resolve an individual particle is proportional to the bandwidth of the system.
- The size of the pickups is inversely proportional to the bandwidth of the pickups
- Bandwidth choice in the microwave regime of 1-10 GHz
 - □ Reasonable size pickups with respect to beam pipe aperture
 - Availability of Power Amplifiers
 - ☐ Bad Mixing (to be covered later...)
- Large bandwidths in the microwave regime are usually limited to an octave (F_{upper} = 2 x F_{lower})
 - ☐ Power amps, pickup design, etc...

Octave Bandwidth Response

-1/f_L

1/f_L

Mixing

- The ability of the pickup to resolve a single particle is proportional to the bandwidth of the pickup
- To resolve a single particle in the FNAL Accumulator, the pickup bandwidth would have to be greater than 629,000 TeraHertz
- The maximum bandwidth of the cooling systems in the Accumulator is 4 GHz, so on average, there are 160x10⁶ particles are underneath the pickup at any given time.

Mixing

- These other particles are sources of noise for a given particle that needs to be cooled. But:
 - ☐ Since each particle has a slightly different energy than any other particle, every particle will take a slightly different time to travel around the accelerator
 - ☐ This causes the particles to continually mix up so that the noise contribution of the other particles averages to zero in the long run.
 - ☐ This effect is caused Mixing (Good Mixing). The Mixing factor is given as how many turns around the accelerator does it take for the beam to randomize.
 - >FNAL Accumulator M=4 @ 6 GHz
 - >FNAL Debuncher M=8 @ 6 GHz

Mixing

Before Mixing

After Mixing

 N_p = Number of particles in the accelerator

 N_s = Number of particles underneath the pickup at any given time

 T_r = Average revolution period of a particle

W = Bandwidth of the amplifier

 g_0 = Frequency gain of amplifier at 0 Hz

 $x_i(m)$ = Transverse position w.r.t. the closed orbit of particle i on turn m

 $\sigma = r.m.s.$ beam size

Simple Amplifier Response

$$g(t) = \sum_{-\infty}^{\infty} g_n e^{jn \frac{2\pi}{T_r} t}$$

Amplifier Freq. Response

$$g_n = \frac{1}{T_r} \int_{-T_r/2}^{T_r/2} g(t) e^{-jn\frac{2\pi}{T_r}t} dt$$

$$g_n = g_0 \frac{\text{Sin}\!\!\left(\frac{n\omega_r}{2W}\right)}{n\omega_r/2W}$$

Correction at kicker for particle i on turn m+1

$$x_i(m+1) = x_i(m) - g_0WT_r \sum_{j=i-N_s/2}^{i+N_s/2} x_j(m)$$

Number of particles underneath pickup/kicker

$$N_s = N_p \frac{1}{N_r} = \frac{N_p}{WT_r}$$

Square both sides of equation

$$\begin{split} \left(x_{i}(m+1)\right)^{2} - \left(x_{i}(m)\right)^{2} &= -2g_{0}WT_{r}x_{i}(m)\sum_{j=i-N_{S}/2}^{i+N_{S}/2}x_{j}(m) \\ &+ g_{0}^{2}\left(WT_{r}\right)^{2}\sum_{j=i-N_{S}/2}^{i+N_{S}/2}x_{j}(m)\sum_{j=i-N_{S}/2}^{i+N_{S}/2}x_{k}(m) \end{split}$$

Sum over all particles

$$\begin{split} \frac{1}{N_p} \sum_{i=1}^{N_p} & (x_i(m+1))^2 - (x_i(m))^2 = -2g_0WT_r \frac{1}{N_p} \sum_{i=1}^{N_p} x_i(m) \sum_{j=i-N_s/2}^{i+N_s/2} x_j(m) \\ & + g_0^2 (WT_r)^2 \frac{1}{N_p} \sum_{i=1}^{N_p} \sum_{j=i-N_s/2}^{i+N_s/2} x_j(m) \sum_{k=i-N_s/2}^{i+N_s/2} x_k(m) \end{split}$$

Averaging <> over many turns and assuming mixing in one turn

$$\left| \frac{1}{N_p} \left\langle \sum_{i=1}^{N_p} x_i(m) \sum_{j=i-N_s/2}^{i+N_s/2} x_j(m) \right\rangle = \frac{1}{N_p} \sum_{i=1}^{N_p} (x_i)^2 = \sigma^2$$

$$\frac{1}{N_p} \left\langle \sum_{i=1}^{N_p} (x_i(m+1))^2 - (x_i(m))^2 \right\rangle = \Delta \sigma^2$$

$$\left\langle \sum_{j=i-N_{S}/2}^{i+N_{S}/2} x_{j}(m) \sum_{k=i-N_{S}/2}^{i+N_{S}/2} x_{k}(m) \right\rangle = \sum_{j=i-N_{S}/2}^{i+N_{S}/2} (x_{j})^{2} = N_{S}\sigma^{2}$$

The average change in beam size over 1 turn

$$\Delta \sigma^2 = \left(-2g_0 + g_0^2 N_p\right) W T_r \sigma^2$$

The average value of the beam size will change over time by:

$$\frac{d\sigma^2}{dt} = W\left(-2g_0 + g_0^2 N_p\right)\sigma^2$$

which has the following solution

$$\sigma^2 = \sigma_0^2 e^{-t/\tau}$$

The cooling rate is:

$$\frac{1}{\tau} = W \left(2g_0 - g_0^2 N_p \right)$$

The fastest cooling rate occurs when:

$$\left| g_0 \right|_{\text{opt}} = \frac{1}{N_p}$$

The fastest cooling rate is:

$$\frac{1}{\tau}\bigg|_{opt} = \frac{W}{N_p}$$

Schottky Signals

$$-\eta \frac{\Delta pc}{pc} = -\frac{\Delta T_r}{T_r} = \frac{\Delta f_r}{f_r} = \frac{\Delta hf_r}{hf_r}$$

$$i_k(t) = q \sum_{n = -\infty}^{\infty} \delta(t - nT_{r_k} - \tau_k)$$

$$i_k(t) = q \sum_{n=-\infty}^{\infty} \delta(t - nT_{r_k} - \tau_k)$$

$$i_{k}(t) = \sum_{n=-\infty}^{\infty} i_{k}^{(n)} \left(n\omega_{r_{k}} t\right) = \frac{q}{T_{r_{k}}} \sum_{n=-\infty}^{\infty} e^{jn\frac{2\pi}{T_{r_{k}}}} (t-\tau_{k})$$

Schottky Signals

- Due to momentum spread in the beam, each particle revolves around the accelerator with a slightly different revolution frequency
- This periodic motion will present a periodic spectrum in frequency space. The periods of the spectrums are called bands.
- At a given band, the instantaneous current due to two different particles will sometimes add and sometimes subtract from one another because of the small difference in revolution frequencies.
- On average, the interaction between the two particles will cancel out and the POWER at a band (not the current!!!) will be the sum of the power from each particle

Schottky Signals

The power at band **n** due to particle **k**

$$P_{k}^{(n)} = Z_{pu} \left\langle i_{k}^{(n)} \left(n \omega_{r_{k}} t \right) \right\rangle = Z_{pu} \left(\frac{q}{T_{r_{k}}} \right)^{2}$$

The total power at band **n**

$$P^{(n)} = \sum_{k=1}^{N_p} P_k^{(n)} = N_p Z_{pu} \left(\frac{q}{T_{r_k}}\right)^2$$

Schottky Spectrum

Short term spectrum Long term spectrum

Mixing in the Frequency Domain

 At a given band, particles with revolution frequencies close to the particle we want to cool produce "noise" that heats the particle

Test Particle
Other Particles

Mixing in the Frequency Domain

The mixing factor at a given harmonic n (band) is given as:

$$M(nf_{r0}) = \frac{f_r}{n\Delta f_r}$$

Cooling Rate with Mixing factor

The cooling rate is:

$$\frac{1}{\tau} = W(2g_0 - g_0^2 N_p (M + U))$$

Where M is the average mixing factor of the system bandwidth and U is the average (thermal) Noise to Signal.

The fastest cooling rate occurs when:

$$\left|g_0\right|_{\text{opt}} = \frac{1}{N_p(M+U)}$$

The fastest cooling rate is:

$$\left. \frac{1}{\tau} \right|_{opt} = \frac{W}{N_p(M+U)}$$

Cooling Rate Examples

FNAL Accumulator Core Transverse systems

$$N_{\rm p} = 1 \times 10^{12}$$

$$W = 3x10^9 Hz$$

$$\Delta p/p = .15\%$$

$$\eta = 0.012$$

$$f_r = 628,888 \text{ Hz}$$

$$M(6GHz) = 5.8$$

$$\tau = 32 \text{ min}$$

FNAL Debuncher Transverse systems

$$N_{\rm p} = 85 \times 10^6$$

$$W = 3x10^9 Hz$$

$$\Delta p/p = .5\%$$

$$\eta = 0.006$$

$$f_r = 590035 \text{ Hz}$$

$$M(6GHz) = 3.3$$

 $\tau = .1 \text{ sec } !!!$

$$\tau$$
(reality) = 1.5 sec

Bad Mixing

- We want the particles to randomize completely when going from KICKER to PICKUP
- Because of dispersion, two particles with different momenta will take different times to travel from PICKUP to KICKER
- The cable that connects pickup to kicker has the right delay for only one of these particles.
- The other particle will arrive out of phase with its cooling signal when it arrives at the kicker.
- This phase error gets worse at high frequencies

Bad Mixing

Bad Mixing

The difference in transit time between pickup to kicker

$$\Delta \tau = x T_r \eta \frac{\Delta p}{p}$$

where **x** is the fraction of the circumference that the particles must travel from pickup to kicker:

$$\Delta\theta_{\text{max}} = 2\pi f_{\text{max}} \Delta\tau \le \frac{\pi}{2}$$

Maximum frequency of the cooling system

$$f_{\max} \le \frac{1}{4xT_r\eta \frac{\Delta p}{p}}$$

3D Stripline Pickups

3D Stripline Pickups

3D Stripline Pickups

Planar Loops

Combiner Boards

Multi-Band Band Cooling Systems

- At high frequencies, building wideband arrays becomes difficult because the beam pipe can support many microwave modes.
- The beam pipe over-moding problem can be overcome by breaking the cooling band into many narrow-band channels centered at different frequencies
- Sensitive narrow band pickup and kicker arrays can be constructed from slow wave structures
- The net result of many narrow band systems centered at adjacent frequencies is a high resolution, wideband system

Multi-Band Cooling Systems

Slow Wave Pickups

- Slots carved in a waveguide wall will slow down the <u>phase</u> velocity of a wave in the waveguide.
- When the reduced phase velocity of the waveguide matches the beam velocity, the coupling of the slots will add constructively.
 - ☐ The gain of the array is proportional to the number of slots.
 - ☐ The bandwidth of the array is inversely proportional to the number of slots.

Slow Wave Array

Slow Wave Array

Slow Wave Array Response

3D Stripline Kicker

Reciprocity

$$\frac{\Delta pc|_{z}}{q} = \int_{-\infty}^{\infty} E_{z}e^{-j\kappa z}dz$$

$$\frac{\Delta pc|_{y}}{q} = \int_{-\infty}^{\infty} (E_{y} - \eta H_{x})e^{-j\kappa z} dz$$

Travelling Wave Tubes (TWTs)

- The power amplifier for cooling must have a large bandwidth
- TWTs can have bandwidths as large as an octave and gain greater than 40 dB
- TWTs have a helix which wraps around an electron beam
 - ☐ The helix acts to slow down the electromagnetic wave (RF) that is traveling along the helix from input to output
 - ☐ The helix slows down the wave so that the phase velocity of the wave matches the velocity of the electron beam
- At the input, the RF modulates the electron beam velocity
- The modulation in electron beam velocity results in modulation of electron beam density.
- Since the velocities are matched the modulation in electron beam density adds energy to the RF wave

Traveling Wave Tube (TWT)

System Phasing

For the system to work

$$\Box T_2 = T_1 + T_3$$

We know that

$$\Box T_r = T_2 + T_4$$

We measure

$$\Box T_{\text{meas}} = T_1 + T_3 + T_4$$

We adjust T₁ & T₃

$$\Box T_{\text{meas}} = T_{\text{r}}$$

Network Analyzer Measurements

- The output of a network analyzer (NA) sends a single frequency sine wave out to the kicker
- This sine wave modulates the beam
 - ☐ Transverse: mini-wiggles the beam
 - ☐ Longitudinal: mini-bunches the beam
- The beam responds only if the frequency sent out by the analyzer is close to one of its resonant frequencies
 - ☐ Transverse: Betatron sidebands
 - ☐ Longitudinal: Revolution lines
- The pickup senses the beam modulation and sends the signal to the input of the NA.
- The NA compares the phase and amplitude of the input sine wave to the output sine wave and displays the vector results

Single Band Transfer Function

- The beam responds
 only if the frequency
 sent out by the
 analyzer is close to
 one of its resonant
 frequencies
 - ☐ Transverse:
 Betatron
 sidebands
 - □ Longitudinal: Revolution lines

Nyquist Stability Plot

- Another way of displaying the single band transfer function
- If the trajectory encircles +1,
 the system will -1
 be unstable

Wideband Transfer Function

System Equalizers

 The shape of the transfer function can be modified with microwave filters installed in the system trunk.

Signal Suppression

- A stochastic cooling system is a negative feedback system
- With negative feedback, a portion of the output of the system is fed back to the input so as to reduce the signal on the output
- The amount the output is suppressed is proportional to the strength of the feedback

Signal Suppression Measurements

 At optimum gain for a cooling system, the signal is suppressed by 6 dB (a factor of 2)

Palmer Momentum Cooling

- Pickups in high dispersion and low beta measure a particle's position which is proportional to the particle's energy.
- Kickers in low (zero) dispersion are wired in sum mode so as to give a longitudinal kick (Electric field in the direction of the particle's motion.
- Advantages
 - □ Very stable
 - Resistant to bad mixing
- Disadvantages
 - ☐ low signal to noise
 - ☐ Lattice must have high dispersion

FNAL Accumulator StackTail Pickup

FNAL Accumulator StackTail Profile

$$\Phi_0 = \frac{|\eta|}{4} \frac{W^2}{f_0} \frac{E_d}{pc} \frac{1}{\ln(f_{max}/f_{min})}$$

$$\Phi_0$$
 = particle flux E_d = exponential slope

Filter Momentum Cooling

- Pickups in low dispersion are wired in sum mode.
- Correlator notch filter in trunk acts like an analog 1 turn memory which detect if revolution period of particle is different from desired revolution period
- Kickers in low (zero) dispersion are wired in sum mode so as to give a longitudinal kick
- Advantages
 - ☐ Good signal to noise
 - No high dispersion needed in lattice
- Disadvantages
 - ☐ Bad mixing because of additional phase slope of filter
 - ☐ Closer to instability because of filter phase slope

Correlator Notch Filter

- Delay of long delay line equals desired revolution period
- Delay line made of:
 - ☐ Superconducting cable
 - Optical Fiber
 - Bulk Acoustic Wave devices

